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We consider the flow of a viscous incompressible fluid in a parallel-walled channel, 
driven by steady uniform suction through the porous channel walls. A similarity 
transformation reduces the Navier-Stokes equations to a single partial differential 
equation (PDE) for the stream function, with two-point boundary conditions. We 
discuss the bifurcations of the steady solutions first, and show how a pitchfork 
bifurcation is unfolded when a symmetry of the problem is broken. 

Then we describe time-dependent solutions of the governing PDE, which we 
calculate numerically. We analyse these unsteady solutions when there is a high rate 
of suction through one wall, and the other wall is impermeable : there is a limit cycle 
composed of an explosive phase of inviscid growth, and a slow viscous decay. The 
inviscid phase ‘almost ’ has a finite-time singularity. We discuss whether solutions of 
the governing PDE, which are exact solutions of the NavierStokes equations, may 
develop mathematical singularities in a finite time. 

When the rates of suction at the two walls are equal so that the problem is 
symmetrical, there is an abrupt transition to chaos, a ‘ homoclinic explosion ’, in the 
time-dependent solutions as the Reynolds number is increased. We unfold this 
transition by perturbing the symmetry, and compare direct numerical integrations 
of the governing PDE with a recent theory for ‘Lorenz-like’ dynamical systems. The 
chaos is found to be very sensitive to  symmetry breaking. 

1. Introduction 
In this paper we consider a similarity solution of the NavierStokes equations 

which describes the two-dimensional flow of a viscous fluid driven by suction or 
injection through the porous walls of a parallel-walled channel. Insistence that the 
flow be of similarity form allows a reduction of the Navier-Stokes equations to a 
single partial differential equation (PDE) for the streamfunction in one space 
dimension, the Proudman-Johnson equation (Proudman & Johnson 1962). This 
equation, which is derived in $2, is the subject of this paper. If attention is restricted 
to steady flows then the PDE reduces to an ordinary differential equation (ODE), 
which is more amenable to analysis than the PDE. 

In  1953, Berman gave a series solution of the ODE valid for small values of the 
Reynolds number, R. He considered the symmetric problem where there is equal 
suction (or injection) of fluid through the two channel walls, and he assumed 
correspondingly that his solutions were symmetrical about the centreline of the 
channel. Many authors have extended Berman’s symmetric series solution, for 
example Terrill (1964, 1965), Shrestha (1967), Robinson (1976), Skalak & Wang 
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(1978), Brady (1984), Durlofsky & Brady (1984), Zaturska, Drazin & Banks (1988), 
Watson et al. (1990). I n  fact, as Zaturska et al. have shown, there are also asymmetric 
solutions of the symmetric problem. 

The asymmetric steady problem, where the rates of suction a t  the two channel 
walls are not equal, was first analysed by Proudman (1960), and later by Terrill and 
Shrestha (Terrill & Shrestha 1965; Terrill 1967; Shrestha & Terrill 1968). They 
continued the symmetric solutions of the symmetric problem to give corresponding 
solutions of the asymmetric problem. In $3 we continue the asymmetric solutions of 
the symmetric problem to give new solutions of the asymmetric problem. These new 
solutions are calculated numerically - in detail by integrating an ODE with two- 
point boundary conditions - and in some cases the asymptotic form of the solution 
for large wall-suction rates may be inferred from the numerical solutions. Where this 
has been feasible we describe the results, but with little detail, of our matched 
asymptotics calculations. 

The asymmetric solutions of the symmetric problem arise at a pitchfork 
bifurcation, where the symmetric solution loses stability. Bifurcation theory tells us 
qualitatively how this pitchfork bifurcation is unfolded when the symmetry of the 
problem is broken. Our numerical integrations of the ODE give quantitative details. 

A particular case is examined first, in 93, when there is suction or injection a t  only 
one wall, and the other wall is impermeable. (This is the most extreme case we 
consider. We do not in this paper consider flows driven by suction a t  one wall and 
injection a t  the other, although this suction/injection problem would be interesting 
(Proudman 1960).) Our numerical integrations indicate that there is hysteresis, that  
is, a range of suction rates for which there are multiple steady solutions. They also 
suggest the asymptotic form of the solutions at large wall-suction or injection rates. 
Elsewhere (Cox 1989, 1991) we have shown analytically that the solutions we find 
numerically for this extreme case are the only solutions. This is not true when there 
is suction at both walls, and there may be a large, perhaps infinite, number of 
solutions. 

When both walls are permeable the Berman problem has two dimensionless 
parameters. These may be chosen in many ways: we discuss two of these choices. I n  
the first, a Reynolds number, R, is based on the average rate of suction (or injection) 
through the two channel walls, and a symmetry parameter, e, is effectively the ratio 
of wall-suction rates. For most of our work we take B to be fixed and consider the 
effect of varying R ,  that is, we consider the bifurcations along fixed-s cross-sections 
in parameter space so that the ratio of the suction rates a t  the two walls is fixed. The 
second definition of the parameters takes a Reynolds number, R,  to be based on the 
fluid suction rate at, say, the lower wall and a second parameter, y ,  to be the ratio 
of wall-suction rates. Fixing the Reynolds number R and varying y then corresponds 
to looking at the bifurcations as the suction rate a t  the upper wall is varied, with that 
a t  the lower wall fixed. We show in $3.4 how the bifurcation diagrams on fixed-8 
cross-sections of parameter space can be derived directly from those on fixed-s cross- 
sections with no further numerical work. 

I n  $ 4  we begin our study of time-dependent solutions of the Proudman-Johnson 
equation. First we integrate the PDE numerically for the extreme case where there 
is suction at only the upper wall. When the suction rate is large, we find that there 
is a stable periodic solution to which all other solutions are attracted a t  large times. 
This limit cycle is composed of two parts : an explosive phase of inviscid growth, and 
a much slower viscous decay. Our numerical results suggest analytical forms for the 
solution during each of these phases which are valid in the limit as the suction rate 
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becomes infinite. The explosive phase proves increasingly hard to calculate 
numerically as R (i.e. the rate of suction through the upper wall) is increased : if the 
spatial grid is too coarse then a numerical overflow occurs in a finite time. This 
overflow is removed if the spatial grid is made finer, and does not seem to correspond 
to a mathematical singularity in solutions of the PDE -the exact solution remains 
finite and continues around the limit cycle indefinitely. A similar explosive phase has 
been reported for flow in a channel with two impermeable walls by Childress et al. 
(1989). They observed blow-up of their numerical solution when the viscosity of the 
fluid was small (i.e. the Reynolds number large), and interpreted this as evidence of 
a mathematical singularity in solutions of the Proudman-Johnson PDE itself. In  
fact, further numerical work by ourselves, and Ierley (S. Childress, personal 
communication) indicates that their numerical blow-up, like ours, is a spurious 
numerical artifact which can be avoided by taking a sufficiently fine grid. However, 
we are unable to prove that solutions of the Proudman-Johnson equation (with 
prescribed boundary conditions) must remain bounded for all time, as has been 
proved for other dissipative PDEs, the Kuramoto-Sivashinsky equation for example 
(Foias et al. 1988). The possibility remains open that for larger R than those 
investigated numerically, or for different boundary conditions, solutions of the 
ProudmanJohnson equation may develop singularities in a finite time. We discuss 
this point in $5 .  

Zaturska et al. (1988) showed that for the symmetric problem (with equal rates 
of suction a t  the two channel walls) the time-dependent solutions of the 
ProudmanJohnson equation make a complicated transition from periodicity, 
through apparent quasi-periodicity, to chaos, which arises abruptly from a 
‘ homoclinic explosion ’. They made an analogy with Lorenz’ system of three ODES 
(Lorenz 1963) where, as for the Berman problem, symmetry is crucial to  the 
abruptness of the transition to chaos. We pursue this analogy. We compare, in $6, 
some numerical integrations of the Proudman-Johnson equation for slightly 
asymmetric suction a t  the channel walls with some results from the theory of 
dynamical systems (Glendinning 1987) concerning asymmetric perturbations to 
‘ Lorenz-like ’ systems, to find how sensitive the chaos is to symmetry breaking. Thus 
we investigate the effect of symmetry breaking on the transition to chaos in the same 
way as we investigate its effect on the steady solutions near the pitchfork bifurcation. 
That is, in the latter case bifurcation theory gives qualitative information and 
numerical integration provides quantitative details ; in the former it is the theory of 
dynamical systems which provides the qualitative information. Matching up the 
qualitative and quantitative results produces no surprises near the pitchfork 
bifurcation in the steady problem. For the time-dependent problem, however, this 
matching up is not so straightforward because the region in parameter space where 
there are chaotic solutions turns out to be very small. I n  fact this surprising result 
can also occur in an asymmetric perturbation of the Lorenz system itself (Cox 1989, 
1990). The understanding of how chaos arises when the symmetry of the problem is 
broken is not only of mathematical interest but also relevant to laboratory 
experiments, which will certainly by asymmetric (if only unintentionally). 

The flows described here have numerous applications, for example for control of 
boundary-layer separation with suction or injection. We consider briefly the 
practical utility of the similarity solutions in $ 7 :  to determine this, a careful 
laboratory experiment should be performed. Indeed, a strong practical motivation 
for studying the Berman problem with one porous and one impermeable wall (sQ3.1, 
3.2,4) is that  the flow in such a laboratory experiment could be visualized more easily 
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through a transparent impermeable wall than in the case which has previously 
received most attention, where there is suction through both walls, and experimental 
apparatus would simply obscure the view. 

2. The Berman problem 
The Berman problem is as follows. There is two-dimensional flow in a channel 

- co < x < m, - h < y < h. The fluid is incompressible, so we may introduce a stream 
function Y(x ,  y, t ) ,  in terms of which u = aY/ay and v = -aY/ax, where u is the 
velocity component along the channel and v the velocity component across the 
channel. The NavierStokes equations then reduce to the vorticity equation, 

where u is the kinematic viscosity of the fluid. The boundary conditions are no slip 
at the walls and constant uniform suction, v = V,, at the upper wall, and w = - V-, a t  
the lower wall, that  is 

u=O, v = y  at y = h  

u=O, v=-V-'_, a t  y = - h  

Non-dimensionalizing x and y by h,  u and v by a( V, + V-,) (which is non-zero because 
we only consider the case where V, and V-, have the same sign), t by 2h/(K + V-,), and 
Y by i h ( 6  + V-,), we obtain 

where R = (V, + Y1) h/2u is the Reynolds number. The boundary conditions for Yare 

1, (4) 
Y = - l - s ,  Yy=O a t  y = l  

Y = ~ - E ,  Yy=O a t  y = - 1  

where E = (V, - K1)/( V, + Yl). The special case E = 0, which corresponds to equal 
rates of suction through upper and lower walls, is the symmetric case which has 
previously been considered by many authors. Another special case, E = 1, corresponds 
to flow in a channel with a porous upper wall and an impermeable lower wall. 

There is a similarity solution to (3), (4) of the form 

w x ,  y, = xf (y, t ) ,  ( 5 )  

and in terms of f(y,t) the vorticity equation becomes the Proudman-Johnson 
equation, 

(6) fYYt = R Y f Y Y Y Y  +ffUYY -fYfYY 

with boundary conditions 

fy ( l ,  t, = O I .  

f (1 ,  t)  = - 1 -€, 

f ( - l , t )  = l - E ,  f y ( - l , t )  = o  (7) 

(Proudman & Johnson 1962 give an integrated form of (6).) 
Note that when V, and V-, have the same sign, R > 0 corresponds to suction 

through each wall and R < 0 to injection. I n  the latter case, our non-dim- 
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ensionalization reverses the direction of time. Note also that the Reynolds number 
is defined with respect to the average rate of suction through the upper and lower 
walls. It may seem more natural to fix the suction velocity at one wall, and to define 
a Reynolds number with respect to that velocity, for example if we wish to  examine 
the bifurcations as the rate of suction a t  the other wall is varied. We consider this in 

As noted by Berman (1953) for the symmetric case c: = 0, there are steady solutions 
§ 3. 

F(y) which satisfy 

with boundary conditions 
F ' V  + R(FFrrr - F F " )  = 0 (8) 

F( l )  = - l - ~ ,  F'(1) = O  

F ( - i ) =  1 - € ,  F(-1) = o  (9) 

For convenience, particularly in our numerical work, we often work with the first 
integral of (8), 

where /3, the constant of integration, is a pressure coefficient - that is, the pressure, 
non-dimensionalized with p( V, + V-l)2, is p = p,(y) -@x2/R. 

Terrill & Shrestha (1964, 1965), have given a series solution for F(y) which is valid 
for small R.  In  our notation this is 

Fr"+R(FF"-F'2)+/3 = 0, (10) 

F ( y )  =Fo(y)+RF,(y)+RzF2(y)+ ... as R+O, (11) 

where F,(y) = 2Ay2 - 3) - €, (12) 
Fl(y)  = h ( y 6  - 3y2 + 2) + &4y4 - 2y2 + 1 ) .  (13) and 

We have used this small-R expansion as a starting point for, and as a check on, our 
numerical integrations. 

We shall discuss in later sections the temporal stability of the steady solutions F ( y )  
to disturbances of the similarity form (5 ) .  We determine this stability by the method 
of normal modes : we consider disturbances of the form f (y, t )  = F ( y )  +g(y, t )  = 
F(y)  + eAtG(y) where g is small. Then the solution F is stable if the real part of RA is 
negative for all modes. By linearization of (6) we obtain the equation for G, 

G" +R(FG"'-FG -plrQ'+FrrrG) = RAG". (14) 

The boundary conditions on G are that G and G vanish a t  the walls y = f 1. This 
eigenvalue problem has a discrete spectrum, and two families of eigenmodes have 
been identified by Zaturska et al. (1988), named ql ,  qz,  . . . and r l ,  r z ,  . . . . By solving the 
eigenproblem for G (numerically) we can find and classify the bifurcations of the 
steady solutions F(y) (Zaturska et al. 1988; Watson et al. 1990). 

3. Steady solutions : numerical and asymptotic results 
We use shooting to find numerical solutions of the two-point boundary-value 

problems for F (y )  and its eigenmodes G(y). A careful choice of the direction of 
integration across the channel is often necessary to ensure that we integrate in the 
more efficient sense through the boundary layers which arise near the walls. 
Numerical difficulties arise a t  large IRI, due either to a failure of the integration 
routine (the solution blows up in mid-channel) or a failure of the shooting to 
converge. 
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FIGURE 1.  Velocity profiles, F'(y) against y, for R = -400,0,10,50 when E = 1 .  
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FIGURE 2. F (  1 )  against R, for R > 0 when E = 1.  This is the only branch of steady solutions to (8), 
(9) when E = 1 (Cox 1991). Kote the small interval of hysteresis for R x 3.6. ( F ( 1 )  is proportional 
to the skin friction at the upper wall.) 

To solve the time-dependent problem (6) and (7)  numerically we use a general 
package (Berzins & Dew 1989) designed to integrate elliptic-parabolic systems of 
PDEs by the method of lines. The initial condition f (y, 0) = f,,(y) is decided by the 
context of the integration. We have taken care that sufficiently many polynomials 
are used in the semi-discretization to adequately resolve, for example, the boundary 
layers near the channel walls. Otherwise plausible, but spurious numerical solutions 
can be found (see $4). 

3.1. Numerical results for E = 1 
We have numerically continued for increasing IRI the unique small-R branch of 
solutions which is given by the series ( 1  1 ) .  These numerical results are summarized 
in the following figures: figure 1 shows velocity profiles for some of the flows; figure 
2 shows a typical state variable, F"(l), plotted against R for R > 0 (the quantity 
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FIGURE 3. Eigenvalues of the linear stability problem (14) for the basic flow F ( y ) ,  plotted against 
R when 8 = 1 .  The first four eigenvalues shown are: q l , r l , q z , r z .  Solid lines represent real 
eigenvalues, and dashed lines the real parts of eigenvalues with non-zero imaginary parts. The 
intersections of the q,-loop with the R-axis mark the interval of hysteresis. The Hopf bifurcation 
occurs when Re (4,) = Re (rl) becomes positive at R x 6.377 5625. 

F ( l )  is proportional to the skin friction, ,uau/ay, a t  the upper wall); figure 3 shows 
the eigenvalues ql, r l ,  q2 ,  r2 of the basic flow, F ( y ) .  

When R x 3.27977, the skin friction at  the lower wall vanishes (that is, F (  - 1 )  = 
0) and for greater values of the Reynolds number there is backflow in the lower part 
of the channel. When R x 3.654 149 there is a turning point (saddle-node bifurcation) 
where the eigenvalue q1 passes through zero and the solution branch loses stability. 
We may track round onto the branch of unstable solutions for R < 3.654149 until 
R x 3.525373, where q1 again passes through zero and there is a second turning point, 
where the solution branch regains stability (see figures 2 and 3). Thus (3.525373, 
3.654149) is an interval of hysteresis where there are three co-existing steady 
solutions -two stable and one unstable. A t  R x 3.58875 the eigenvalues q1 and r1 
coalesce and become a complex-conjugate pair with negative real part; at R x 4.175, 
q2 and r2 do likewise, and at R x 5, q3 and rg do so too. When R reaches 6.3775625 
the real part of q1 = r: passes through zero and the steady solution loses stability in 
a supercritical Hopf bifurcation. The steady solution remains unstable as R --f co . 
(We have not calculated q2,3 or r2,3 for large R, so we do not know whether the real 
parts of these eigenvalues become positive as R is increased, that is, whether there 
are further Hopf bifurcations of the steady solution for R > 6.3775625.) For all 
negative values of the Reynolds number we find a single solution, and this solution 
is stable. Elsewhere (Cox 1989, 1991) we have shown analytically that there are no 
other steady solutions than those described above. 

3.2. Asymptotic solution for E = 1 as R --f - co 
Our numerical integrations suggest the following asymptotic form for the solution 
F(y)  in the limit as R -+ - 00. (We have been unable to identify from our integrations 
the asymptotic form of the solution in the limit as R -+ + m .) 
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Away from the lower wall y = - 1 there is an inviscid outer solution which we 
denote by @(y,p) ,  where p = -R. This outer solution can be expanded as a power 
series in p-t, 

@(y, p )  = - 2 cos (in (y - 1)) + ip-ik(y - 1) sin (in (y - 1)) + O(p-')  as p + co , ( 15) 

that  is, as R + - 00, for fixed y + - 1 ,  where k x 0.812022. The constant k arises from 
matching @ with the boundary-layer solution which holds near the lower wall, and 
it is (in); Y,, where p (  Y )  - Y - Y,  as Y + co and p (  Y )  is the Falkner-Skan solution for 
m = 1. Here m is the conventional notation for the parameter (see Batchelor 1967, 
p. 316). The viscous boundary layer, the inner solution near the lower wall, is to 
leading order the well-known Falkner-Skan profile 

~ ( y )  = ~ ( q , p )  = p-~(-(~7c)~p((27c)~q)+o(p-~)}  as p+ co, (16) 

where q = pi(,+ 1 )  is the stretched boundary-layer variable. 

For example from the expressions above we find that 
These asymptotic results are in excellent agreement with our numerical results. 

F"(1) = 67C2+i(in)fY,p-t+O(p-l), 

F"(-1) = - ( i7c) fp/~(O)pf+O(l) ,  

p = - ' 2  ,n p-+ni+f+0(1) as p+ co. 

At R = -400 thesc give p-%"'(-l), F"(1) and p-'P to be -2.427, 1.265, -2.531 
respectively. Our numerical results for these quantities are -2.474, 1.267, -2.533. 
These (and other) numerical results suggest that the terms of order 1 in (18) and (19) 
are -0.95 and -0.8 respectively. 

3.3. Numerical results for 0 < e < 1 

We have described above the solutions of the steady Berman problem (8), (9) when 
E = 1, that is, when there is suction at only the upper wall. We now describe our 
numerical results for the values of c which bridge that case and the more extensively 
studied symmetric problem, where E = 0. Our numerical integrations have been for 
the examples of e = A, i, i, A, for as large a range of R as has been feasible. Some 
results for general e are already known (Terrill 1967; Terrill & Shrestha 1965; 
Shrestha & Terrill 1968), and we summarize them in our notation for completeness, 
while devoting more detail to our new results. 

In  order to put the results for 0 < E < 1 into context, we briefly review some of the 
solutions which are known when e = 0. Robinson (1976) has described the symmetric 
steady solutions of (8), (9) when e = 0 :  there is a single-valued branch of solutions 
(called solutions of type I )  which exists for all R E  R, and a distinct pair of solutions 
(of types II and I I I )  which arise from a turning-point bifurcation at R = R, x 12.165. 
Zaturska et al. (1988) have investigated the stability of these solutions : those of type 
Z are stable for R < R, x 6.001 353 and unstable for R > R,, losing stability in a 
pitchfork bifurcation where two stable asymmetric solutions (of types I, and I ; )  are 
born. The asymmetric solutions lose stability a t  R = R,, x 12.963 in supercritical 
Hopf bifurcations (where they each throw off a time-periodic solution of the PDE 
(6)). They remain unstable for all R > Rll .  The symmetric solutions of type II and 
type III are unstable for all R > R,, and a t  least one further pair of asymmetric 
solutions is shed in a pitchfork bifurcation (from the type III branch) at R, x 
15.4146. 
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FIQURE 4. Bifurcation diagrams, F against R, for (a) E = 0 ;  ( b )  0 < E < el ; (c) E = x 0.86, and ( d )  
E = 1.  Solid lines represent stable solutions, dashed lines unstable solutions, and the shading 
represents the time-dependent solutions of the Proudman-Johnson PDE (6) which are shed at 
supercritical Hopf bifurcations. 

We have integrated (lo), (9) on the solution branches which are continuations into 
E =k 0 of the solutions of types I ,  I,, to the symmetric problem, when E = 0. We have 
not followed the solutions of types 11 and 111 into 8 =k 0 because our results for the 
symmetric problem suggest that they will be unstable, and will play no important 
role in the time-dependent problem. We note, however, that a steady solution being 
unstable does not necessarily mean that it is unimportant in the time-dependent 
problem. Indeed, in $6 we show how the unstable steady solution of type I governs 
the dynamics of the unsteady problem. 

The bifurcation diagrams of F against R are shown in figure 4 for fixed 0 < E < 1 : 
their qualitative features are based on our numerical results and are discussed below. 
(Recall that we have considered only suction/suction or injection/injection at the 
walls, that is, I E ~  < 1 . )  

When E = 0, there is a pitchfork bifurcation followed by a pair of Hopf bifurcations 
on the outer prongs of this pitchfork. The pitchfork bifurcation is a result of the 
symmetry of the problem, that is, the invariance of (8), (9) under the transformation 
F(y)++-J’( -y). In general a pitchfork is of codimension two. Zaturska et al. (1988) 
show by a perturbation analysis how this pitchfork will be broken for 0 < E < 1 (in 
their figure 6) and our numerical results are consistent with their analysis. The 
symmetry of the system when e = 0 implies that the two Hopf bifurcations occur at 
the same value of the Reynolds number (figure 4a). For E > 0 the pitchfork is broken 
and a primary branch (in these diagrams, the upper one) emerges: in a quasi-static 
variation of R, increasing R from zero, say, the solution always takes the upper 
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FIQURE 5 .  Two-parameter bifurcation diagram : F against R and E .  Projecting the solution surface 
down onto the (R, +plane reveals the cusped regions of multiple solutions. (We have indicated this 
projection only for E > 0 :  E < 0 follows by symmetry.) 

branch for E > 0 (figure 4b), whereas for e = 0 there is no distinguished branch. For 
E > 0 the upper branch loses stability in a Hopf bifurcation before the lower. As E is 
increased further, the saddle-node bifurcation a t  which the stable/unstable pair of 
solutions is born occurs for larger values of R (that is, in these diagrams it moves to 
the right). Increasing E to  el, where from our numerical results 0.85 < a1 < 0.87, 
introduces a hysteresis point into the bifurcation diagram, so that when E is greater 
than a1 there is a range (R,,,, R,,,) of R for which three steady solutions exist on the 
primary branch (figure 4c). Finally, when E = 1 the secondary (disjoint) branches of 
solutions have moved out to infinity, and the only steady solutions lie on the primary 
branch (figure 4 d ) .  I n  what follows, we shall refer to upper, middle and lower 
branches of solutions - this naming of branches is with respect to these bifurcation 
diagrams, that is, for 0 < a < 1 the upper branch is the primary branch, the middle 
and lower branches are respectively the unstable and stable branches born in the 
saddle-node bifurcation. The middle branch is unstable for all values of the Reynolds 
number for which i t  exists, and the upper and lower branches lose stability in Hopf 
bifurcations as R is increased. 

We can summarize these bifurcations in a single two-parameter bifurcation 
diagram, of which each of the fixed-a diagrams in figure 4 is a cross-section. 
Projecting the solution surface down onto the (R, €)-plane shows for which parameters 
there are multiple steady solutions (see figure 5 ) :  there are three steady solutions 
inside the cusped regions whose boundaries are gl and a,. 

Figure 6 shows numerically calculated values for F”( - 1 )  when E = + and a = %. 
(Branches of solutions which end abruptly do so when numerical difficulties prevent 
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further integration.) Note that the graph of F”( - 1) against R is qualitatively like 
figure 4 ( b )  when e = 4, but when e = %, the middle and lower branches have swapped 
places. 

We know that the secondary (disjoint) branches exist for e < 0.9 because we have 
located them numerically. However, we also know that they do not exist for e = 1 
(Cox 1989, 1991). It seems that they exist for all e < 1, but that  they move out to  
infinity as E + 1 - . Also, our numerical results indicate that R,, cc (1 - e)-l as E --f 1, 
where R,, is that  value of the Reynolds number at which the secondary solutions are 
born, a t  the turning point (saddle-node bifurcation). 

3.4. Bifurcations for $xed suction at one wall 
The fixed-e bifurcation diagrams for the steady Berman problem which we have so 
far presented describe the solutions as the total flow rate through the walls of the 
channel is varied with the ratio of the fluid velocities through the walls held fixed. A 
problem of more physical interest (and of greater experimental convenience) is with 
fixed suction at, say, the lower wall and variable suction a t  the upper wall. 

Let y be the ratio of suction rates through the two walls, y = V,/V-, (we consider 
in this subsection the case of suction, but not injection, through both walls because 
this is where the interesting bifurcations are). Then R = Y1 h(y+ 1)/2v and 1 - E  = 
2 / ( y  + 1) so that R( 1 - E )  = V-, h/u = R is the Reynolds number based on the suction 
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FIGURE 7. The crosses indicate the saddle-node bifurcations at which the middle and lower 
branches of solutions arise (determined numerically). They lie on the curve .GB2 (see figure 5). .GBl is 
the boundary of _the (very thin) region of hysteresis (see figures 2 and 5) .  The solid curves are, from 
top to  bottom, R = R( 1 - B )  = i, 2,6.0013,7, 10,30. 

velocity through the lower wall. Therefore as we vary V, with V-, fixed we move along 
a curve r (R)  in (R, €)-parameter space on which R is held fixed. There is a family of 
such curves, each parametrized by y. The bifurcations along each curve r(8) can 
readily be found from the (R, €)-plane without further numerical work. 

In  figure 7, the solid lines represent the curves T(R) for various values of R, and 
the crosses indicate the saddle-node bifurcation a t  which the secondary branch of 
solutions is born as R is increased for fixed E, that is, points on B2 determined by 
numerical integration (figure 5 ) .  Figure 8 shows fixed-& bifurcation diagrams ofF,  as 
y is varied. For small values of d (<  l?,) there is hysteresis over a small interval in 
y (figure 8a).  As R is increased the interval of hysteresis diminishes, and the limiting 
case where there is a single inflexion (or hysteresis) point occurs when r(&,) passes 
through the cusp of a,. When R,  < R < 8, z 6.001 353, there is a single solution for 
all y > 0 (figure 8 b ) .  Then an inflexion point is introduced on T(R,), which passes 
through the cusp of a, (figure 8 c ) .  For R, < R < R3 there is again hysteresis (figure 
8 d ) .  There is a critical value of R at which a secondary branch of solutions is 
introduced for large y.  This value is R, z 9.57, which follows from a numerical fit of 
our data, which shows that the saddle-node bifurcations lie on a curve given by 
R = R( 1 - e) = 9.57 . . . + O( 1 - e) as e + 1 - . As & is increased the interval of hysteresis 
diminishes until the curve 92, becomes tangent to r(R), when R = R4 z 10.5 (the 
bifurcations for R3 < R < R, are shown in figure 8 e )  and so there is a hysteresis point. 
For R4 < R there is a single-valued primary branch and a disjoint, secondary pair of 
solutions which exist for y > - 1 + 2R,,/d (figure 8f). Note that the symmetric case 
corresponds to y = 1. 

The viewpoint taken above, where the suction rate a t  the lower wall is fixed and 
that a t  the upper wall varied, results in a set of bifurcation diagrams (figure 8) which 
are more complicated than those (figure 4) for which the ratio of suction rates (e) is 
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FIGURE 8. Bifurcation diag_rams (F against y )  along the six curves shown in figure 7.  (a) R = t ;  ( b )  
R = 2 ;  ( c )  R = 6.001 3 ;  ( d )  R = 7 ;  ( e )  R = 10; (f) R = 30. These diagrams show the bifurcations as 
the suction rate at the upper wall is varied, with the suction rate at the lower wall fixed. 

held fixed. The two sets of bifurcation diagrams are, of course, just different ways of 
taking one-dimensional sections through the solution sheet in figure 5, but the more 
complicated diagrams in figure 8 are the more relevant ones to  a laboratory 
experiment . 

3.5. Asymptotic results for e E ( 0 , l )  as R + +_ co 
3.5.1. R +- co 

Proudman (1960) has described the asymptotic form of the solution for general 
values of e as R + - co, and we summarize his results here in our notation for 
completeness. There are two inviscid, sinusoidal outer solutions, @+ in the upper part 
of the channel, and @- in the lower, where the leading approximations satisfy 

Go* = [ T i -  €)COS{iqyT 1)/(1*€)}, (20) 

and these are matched a t  a viscous inner layer near y = y* = -€. It is clear from (20) 
that Go, @; and @: are continuous at y = y* whereas @: is not. In  the higher-order 
viscous layer near y = y*, F is of the form 

F ( Y )  = - ; ~ ( y - y * )  +p-%o(pt(y- y * ) )  +o(p-:)), (21) 

for Iy - y*l 4 1,  where we denote -R by p for convenience, and where 
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(The constants of integration which are introduced when integrating (22) to  find 8, 
are determined later in the asymptotic matching process.) We have found excellent 
agreement between Proudman's asymptotics and our numerical results. For example, 
(20) implies that  @g+(l ) /@g-(  - I )  = - (1 -e)/(l  +e) : when e = A, so that 
- (1 -e) / ( l  +e)  = -&, and R = - 10000, our numerical integrations give 

In the limits as e+O, 1,  Proudman's asymptotics for E E  ( 0 , l )  agree with the known 
asymptotic forms of the solution for those cases as R + -  cx) (Zaturska et al. for e = 
0; this paper for E = 1) .  That is, the limits as e + O ,  1 are not singular. 

3.5.2. R + co, middle branch 

Terrill (1967) has given the asymptotic form of the solution on the middle branch 
for general e, assuming that there is an inviscid solution away from the walls which 
is linear in y, and that there is a boundary layer at each wall. I n  our notation, his 
results are 

F"(l) /F"( - 1 )  = -0.1000 ... . 

+ R-2 2e(5 + e2) + 0 ( ~ - 3 ) }  
8 

F(y)  = @(y) = { -e+R-l- 
1 - € 2  (1 - 2 ) 3  

for fixed y E ( - 1 , l )  . Near the boundary layers near the walls, F(  y) = q5+ (qk ), where - 

and where y* = R( 1 f y) near y = f 1. The pressure coefficient is then 

2 (9+ 152) /?=R+--+ ,+O(R-') as R-+ co. 
!-s' R ( 1 - B  ) (25) 

These expansions give good agreement with our numerical results when e is small (for 
example &). For larger values of E (we have taken e = i, I, 8) the linear profile for @(y) 
seems to be replaced by a sinh profile, F - RaA sinhB(y-C) +o(Ra),  for some 
constants A , B , C , a  (which depend on E). We have not been able to integrate (10) 
numerically for sufficiently large values of R even to  determine a, the power of R with 
which F scales as R - t  00. 

4. Unsteady solutions for suction at the upper wall only (8 = 1 )  
So far we have described some steady solutions of the Berman problem. Now we 

turn to the unsteady solutions : first we consider the limit cycle which exists for large 
R when the lower wall is impermeable, and there is suction through the upper wall. 
In  $ 6  we shall consider the route to chaos in the near-symmetric problem. 

Solving (6) and (7)  numerically for E = 1 we find that the only stable solution for 
R < RHopf x 6.3775625 is the steady solution which we have described in $3.1 - this 
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FIGURE 9. Stable limit cycle of (6), (7) when E = 1 and R = 40. The slow viscous ‘inward’ part, 
and the explosive ‘outward’ part are marked. 

fwA- 1, t )  

is true for a wide range of initial conditions, fo(y). For 1 9 R-RHopf > 0, we find the 
only stable solution to  be the limit cycle born in the (supercritical) Hopf bifurcation. 
In  the range 6.4 < R < 40 where we have done calculations, a Fourier analysis 
indicates that  the solution remains periodic, and does not become quasi-periodic or 
chaotic, nor does it undergo period doubling. The solution does, however, grow 
rapidly with increasing R and becomes difficult to compute reliably for values of R 
greater than about 40. 

We analyse below two parts of the limit cycle, which we name according to their 
journey to and from small amplitudes: an ‘inward’ part, and an ‘outward’ part. (See 
figure 9, where we have projected f (y, t)  to  the phase plane whose variables are z1 = 
jug( - 1,  t)  and x2 = f,,(l, t).) The ‘inward ’ part has an inviscid sinusoidal solution 
away from the walls, whose amplitude is slowly diminished by viscous dissipation, 
while the ‘outward’ part has an inviscid solution away from the walls which grows 
rapidly in amplitude by inviscid means, and would become singular in a finite time 
were it not moderated by viscosity near one of the walls. This explosive growth in the 
‘outward ’ part is responsible for the numerical difficulties we encounter. 

4.1. Inward part of limit cycle 
On the inward part, f(y,t)  changes slowly in time and, away from the walls, is 
approximately sinusoidal, f (y, t)  w A(t) cosny. Inserting this ansatz into (6), we find 
that the amplitude A decays exponentially, A(t) x A(to)exp{-n2(t-tto)/R}. This is 
then the slow viscous decay of the inviscid sinusoidal velocity profile. (Our numerical 
results are in agreement with this, see figure 10 for the exponential decay.) 

4.2. Outward part of limit cycle 
On the outward part, fu is a t  first approximately constant on the lowest three- 
quarters of the channel (away from the lower boundary layer) and is positive there, 
so there is flow away from x = 0. I n  the upper part of the channel (again away from 
the boundary layer) fu has a minimum. As time advances, the magnitude of fu 
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increases and its minimum occurs at successively smaller values of y, that  is, the 
‘ hump ’ moves towards the lower wall (see figure 11). Analysing f,(y, t )  and f,,(y, t )  
before the hump gets too close to the lower wall, we find: (i) maxf,(y,t) cc ( t , - t ) - l  
and mini&, t )  K ( t ,  - t ) - ’  as t + t,, for some ‘singularity time’, t , ;  (i i)  there is a local 
minimum of f,,(y, t )  which occurs near the top of the channel, at ymin(t), say - if we 
plot minf,,(y, t )  against ymi,(t) at successive times we find a straight line, mini,, = 
ay,, ,( t)+b; and (iii) in the lower region of the channel fyy x 0, and in the upper 
region the profile is very nearly sinusoidal. 

FIGURE 10. Time series off,,( - 1, t )  andf,,( 1, t )  for the limit cycle in figure 9. The slow exponential 
viscous decay of the ‘inward’ par t  and the explosive growth of the ’outward’ part are indicated. 
(The quantity f,,( f 1) is proportional to  the skin friction at the walls.) 

FIGURE 10. Time series off,,( - 1, t )  andf,,( 1, t )  for the limit cycle in figure 9. The slow exponential 
viscous decay of the ‘inward’ part and the explosive growth of the ’outward’ part are indicated. 
(The quantity f,,( f 1 )  is proportional to the skin friction at the walls.) 

FIGURE 11 .  Velocity profiles f, against y at successive time intervals of 0.02 s ,  during the 
outward part of the limit cycle in figure 9. 
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Away from the walls the solution appears to  have the similarity form 

where 

Then comment (i) implies that p + q  = 1,  and (ii) implies that p + 2 q  = -q ,  so p = 

and q = -4. (We distinguish between general solutions of the Berman problem, which 
are all of the similarity form where Y = x f ( y ,  t ) ,  and solutions f which have the 
further self-similarity of (26), (27). In  this section 'similarity solution' will mean the 
latter, which, in the terminology of Barenblatt & Zel'dovich (1972)) is an intermediate 
asymptotic .) 

Since q < 0 no shock develops. Instead the hump spreads out as time advances. 
This phenomenon is inviscid: after substituting the ansatz (26), (27) into the 
ProudmanJohnson equation (6) the viscous term is a factor of the order ( t , - t ) 2 u  
smaller than the other terms as t + t ,  (away from the boundary layers). 

Clearly the similarity solution (26) blows up as t + t , ,  but the full solution of (6) 
cannot blow up in the same way because the walls a t  y = f 1 prevent the indefinite 
spreading of the velocity profile. Instead, when the hump gets close to  the lower wall 
some moderating viscous mechanism enables the solution to round the ' south-east 
corner' (the 'sharp end') of the limit cycle and begin the inward part. Before this 
viscous moderation, the solution f becomes large, and in particular there are large 
gradients in f in the boundary layers. For example, the most extreme values of the 
quantities f,,( k 1, t )  on the limit cycle (which occur at the 'south-east corner') seem 
to grow like RP as R is increased (where p z 4). Indeed, for R greater than about 40, 
the numerical solution 'blows up', that  is, we encounter numerical overflow. Refining 
the spatial grid removes the overflow for a given R, but successive increases in R 
require ever finer grids. The power-law growth of the limit cycle with increasing R is 
some evidence that the limit cycle exists for all R > RHopP, and therefore that the 
numerical overflow does not represent a true finite-time mathematical singularity in 
the exact solution f of the Proudman-Johnson equation. We return to this point 
later. 

The similarity solution q5(7) satisfies the equation 

, (28) @'I - k$'" = ++"I - +I+)' + S@V 

where 6 = u ( t , - t ) 2 .  We are interested in the limit as u + O  and as t + t ,  so that 6 is 
small. Ignoring then the viscous term in (28), we may combine a linear and a 
sinusoidal profile for g5 to give the observed numerical profile during the outward part 
of the limit cycle, away from the boundary layers. That is, 

(29) + = -$+aksin ( (7-qo)/a)  for for 7 r ] < 7 0 1 y  > 7o 

for some constant a ,  where k = d ,  b = ( t , - t )2p+a,  and /3 is the pressure coefficient 
as in $2. From a numerical fit off;' against t in the region r ]  < v0, we find # r  x 0.757, 
and so k x 1.257, when R = 40. At the matching point (7 = vo),  4, qS and f are 
continuous, but +"' is not - a viscous layer acts in a thin region around r ]  = yo to 
smooth +'" there, as for the steady solution described in $3.5.1 (Proudman 1960). The 
thickness of the viscous matching region is lg-701 = O(b) = O ( f ( t , - t ) ) .  In terms of 
y this region has thickness of order d ( t , - t ) ~ .  The viscous layer therefore becomes 
very thin both as u + 0 and as t -+ t ,  (so do the boundary layers near the walls y = f 1).  

+ = - t7+k(7-70)  



18 S. M .  Cox 

This is one reason why the numerical code runs into difficulties as R is increased : the 
spatial grid is too coarse to resolve the viscous layers. 

5. Finite-time singularities in the Euler and Navier-Stokes equations 
We have described above how the solutions of the Proudman-Johnson equation 

grow rapidly in amplitude as the Reynolds number (based on the suction velocity 
through the wall) increases, and how we encounter numerical overflow when we try 
to  calculate large-R flows. We have not interpreted the numerical overflow as a 
mathematical singularity because the overflow can always (in our experience) be 
removed by refining the spatial grid sufficiently. There is, however, great interest a t  
present in the finite-time blow-up of solutions of the Euler and NavierStokes 
equations (see, for example, Childress et al. 1989; Stuart 1988), so it  seems 
appropriate to examine the explosive ‘outward’ part of the limit cycle further. Since 
i t  is a viscous effect that  prevents f from becoming singular as t + t,, we consider now 
what would happen in the absence of viscosity. 

Stuart (1988) has given examples of three-dimensional solutions of the Euler 
equations in an unbounded domain which blow up in a finite time. There is a single 
characteristic on which the solution becomes singular as t --f t,, the singularity time. 
Similarly, Calogero (1984) has shown that, for example, the equation 

WXt + w,, w + h +pws + vw: = 0 

can be solved by quadratures, where h , p ,  v are constants, and that given suitable 
(but very general) initial conditions a solution w(x,t) can blow up in a finite time, 
along one characteristic. This equation is a generalized version of the Proudman- 
Johnson PDE, where w(x, t )  = - f (y, t )  and the viscous term is ignored. 

It is easy to construct solutions of the Euler equations in an unbounded domain 
which blow up in a finite time: there are similarity solutions which have the 
singularity as t +is built in (for example, if the solution is of the form U / ( t , - t ) ) .  The 
interesting feature of Stuart’s solutions of the Euler equations (and Calogero’s 
solutions of similar equations) is that their singular behaviour is not built-in, but 
arises naturally for a wide class of initial conditions. In  our case, in the Berman 
problem, we have shown that an essentially inviscid phase arises naturally as an 
intermediate asymptotic (Barenblatt & Zel’dovich 1972) of the full (viscous) problem, 
and that to a first approximation solutions in this inviscid phase become singular in 
a finite time, although for solutions of the full PDE a viscous moderating mechanism 
acts to prevent such a singularity. Our similarity solution, (t ,- t)-;@(y), as an exact 
solution of the Euler equations which exhibits blow-up, is of no great interest. Rather 
what is of interest is that  this inviscid solution should arise spontaneously from a 
non-singular limit-cycle solution of the full viscous PDE. We have already described 
its similarity form in (26), (27). Now we offer an alternative description in terms of 
Characteristics. 

If the viscous term vfyyUy is omitted then the Proudman-Johnson equation (6) may 
be cast in the form of a quasi-linear PDE for u ( y ,  t)  (up to a multiplicative factor of 
5) 9 

ut -f (y, t )  uy = p-u2,  (31) 

which we can solve by the method of characteristics (Stuart 1988 and Calogero 1984, 
modified to allow for the singularity in the pressure coefficient, p, as t + t , ) .  Thus we 
solve aY(6, t ) /a t  = - f for y = Y(6, t ) ,  the characteristics; and aU(6, t ) /a t  = p -  u2 for 
the velocity, u ( y ,  t) = U(6, t ) .  The characteristic variable is 6. 
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We find the velocity to be 

where a([) = t i Z k ( t ,  U(5,O) - k + a ) / ( t ,  U(5, 0) + k +a). The characteristics are given by 

Y(g , t )  = y,+[exp{ -[ U(r,t')dt'}dr. (33) 

Insight into the behaviour of the characteristics is gained by expanding these 
expressions for U and Y near t = t,. From (32), we find that 

U(5, t )  - (k-;)(t,-t)-'+ ... as t - t t , .  

This intermediate asymptotic, where the velocity is proportional to (t, - t)-17 is 
indeed that observed in our numerical integrations (see $4.2). From (33), we find that 
on any given characteristic 

(y-yo) oc (5-5,) (t,-t)"-t as t+t, .  (34) 

Recall that when R = 40, for example, k x 1.257, so that the characteristics become 
increasingly bunched together as t -+ t,, although the velocity profile spreads out in 
that limit. We conclude that although the description off in terms of characteristics 
is the more physically meaningful, the description in terms of the similarity variable 
7 is the more revealing. 

Childress et al. (1989) have recently considered two-dimensional viscous flow of the 
Berman similarity form (that is, in our notation (u,w) = (zf,(y,t), -f(y,t))) in a 
channel with parallel, impermeable walls ; the boundary conditions on f and f, at the 
walls are then homogeneous. A Reynolds number of t h e f i w  is defined to be 

where v is the kinematic viscosity of the fluid, and L the width of the channel. (Recall 
that the Reynolds number for the Berman problem involves the wall-suction 
velocities, and is independent of the flow which is driven in the channel.) They show 
analytically that when the initial Reynolds number, R, = R(O), is below about 16.212 
then the velocity profile decays to zero as t +- 00. Numerical integrations are carried 
out for these stagnation-point flows for a range of R, > 16.212, and in a typical 
integration, with R, = 6400, machine overflow occurs in a finite time ( t ,  x 1.50). This 
'blow-up ' is interpreted as evidence of a mathematical singularity in the solution of 
the Proudman-Johnson PDE. Indeed, Childress et al. find that just before the blow- 
UP 3 

where t, is the singularity time. Their velocity profiles, however, become ragged as 
the singularity time is approached. We found that similarly ragged velocity profiles 
arose in our numerical solutions of the Berman problem when too coarse a spatial 
grid was chosen - refining the grid always removed the raggedness. Indeed, in a 
personal communication, Childress reports that in subsequent numerical integrations 
their numerical overflow can also always be removed by choosing a suitably fine 
spatial grid. This implies that the numerical overflow which they observe does not 
represent a mathematical singularity in exact solutions f. It may be that for 
sufficiently large R, (or R )  a true mathematical singularity develops in solutions of 

R-'(t) OC ( t , - t ) ,  (36) 
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the Proudman-Johnson equation with homogeneous (or suction) boundary con- 
ditions. This is an open question. Alternatively, i t  may be possible to construct an 
inertial manifold for the Proudman-Johnson equation, and prove that solutions 
must remain bounded for all times, and that there can be no finite-time singularities, 
as has been done for other dissipative PDEs, such as the Kuramoto-Sivashinsky 
equation (Foias et al. 1988), and the complex Ginzburg-Landau equation (Doering 
et al. 1988). 

6. The transition to chaos 
6.1. The transition to chaos in the symmetric problem 

Zaturska et al. (1988) have calculated time-dependent solutions of the symmetric 
Berman problem by numerically integrating the ProudmanJohnson equation (6) 
subject to boundary conditions (7),  with E = 0. They describe the bifurcations of the 
solutions as R is increased. There is an abrupt transition from simple to complicated 
dynamics as R increases through a threshold value, R,,,. This transition is a so- 
called ‘ homoclinic-explosion ’ (Sparrow 1982), and is directly analogous to that in 
Lorenz’ system of three ODES (Lorenz 1963). It is this analogy which we exploit in 
this section when we interpret the numerical results that we present for slightly 
asymmetric problems (where 0 < I E ~  4 1) .  The abruptness of the appearance of chaos 
in time-dependent solutions of the symmetric problem is a consequence of the 
symmetry, just as the pitchfork bifurcation of the steady solutions is when R = 
R, x 6.001 353. The theory of ‘ Lorenz-like ’ dynamical systems (Glendinning 1987) 
predicts a smooth route to chaos for slightly asymmetric Berman problems. Our aim 
in this section is to apply Glendinning’s theory and unfold the ‘ homoclinic explosion ’ 
of the symmetric problem. That is, we describe the wider range of behaviour which 
is possible when both R and E may be independently varied. (When there is 
symmetry ( E  = 0), we may vary only R, and thereby take a one-dimensional cross- 
section through the two-dimensional (R, €)-parameter space.) 

The theory we shall apply holds strictly for three-dimensional dynamical systems 
(Glendinning 1987), although we shall apply it to our  infinite-dimensional system, 
the Proudman-Johnson equation (6). We believe ourselves to be justified in this 
(although we cannot prove it) because our numerical results suggest that for general 
values of R and E ,  solutions f ( y , t )  are rapidly confined to some low-dimensional 
submanifold of the infinite-dimensional function space in which they lie. Therefore 
the system is effectively low-dimensional ; its dynamics are essentially determined by 
a small number of modes. This is a common feature of dissipative PDEs, for example, 
the KuramotoSivashinsky equation (Foias et al. 1988). The rapid attraction of 
solutions to a limit cycle (which has dimension one) when R is large and E = 1 
exemplifies the effective low-dimensionality of the ProudmanJohnson equation. 

We shall take the geometric view that f ( y ,  t )  evolves along some trajectory in its 
function space, and assume that we can understand its behaviour by thinking of it 
as evolving in R3, after some initial transients. We thus assume the existence of an 
inertial manifold for the ProudmanJohnson equation, of dimension not greater than 
three for the values of R and E of interest (we cannot prove the existence of such an 
inertial manifold). This assumption is crucial to  our interpretation of the transition 
to  chaos. 

In order to  present solutions f ( y , t ) ,  we project them into R2. Under projection, 
steady solutions F( y )  become fixed points and periodic solutions become closed 
periodic orbits, for example. As before, we shall take 2, =f,,( -1 , t )  and x2 =fUy(1, 
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t )  as our phase-plane variables. When E = 0, the invariance of (6), (7) under the 
mapping f(y,  t )  ~ - f (  - y, t )  (a symmetry which corresponds to flipping the channel 
about its centreline) implies that  to  every trajectory in the phase plane there 
corresponds another which is its image under reflection in the line Y = {(x,, 

A summary of the numerical results of Zaturska et al. (1988) will provide a 
background for our own results. The language of this section will be largely that of 
dynamical systems (see, for example, Guckenheimer & Holmes 1986) - we have tried 
to keep the jargon to  a minimum, and to  explain those specialized terms we use. 
Nevertheless, this section may seem rather confusing for the reader who is not used 
to the dynamical systems approach. For such a reader, the essential result may be 
summarized as follows. The chaotic (aperiodic) solutions found by Zaturska et al. for 
the symmetric problem are predicted by the theory of dynamical systems to persist 
when E + 0. This qualitative statement is true, but in practice it turns out that  the 
symmetry need be perturbed only very slightly for the chaotic solutions to be 
replaced by more regular, periodic solutions. 

For the rest of this section we consider R > R,, x 12.963, where the interesting 
bifurcations occur. 

The fixed point I (which represents the steady solution of type I )  is a saddle, with 
a one-dimensional unstable manifold, wU(I), and leading (that is, least negative) 
eigenvalues of the linear stability problem (14) : A,, A,, A S €  R satisfying 

x2):x1+x, = O } .  

A, > 0 > A, > A, and -A,/A, < 1. (37) 

(The unstable manifold of a fixed point I of a dynamical system is the set of points 
which approach I when run backwards in time, in the limit as t + - 00.) These are 
technical conditions required of the eigenvalues by Glendinning’s theory, which will 
be applied later. Similarly each of the steady solutions of types I ,  and I ;  has a two- 
dimensional unstable manifold. (Recall that  I ,  and < are the pair of asymmetric 
steady solutions born in the pitchfork bifurcation when R = R,. In  the phase plane 
they are mirror images in the line 9, that is, < is obtained from I ,  by flipping the 
channel about its centreline.) These solutions of types I ,  and I ;  have become unstable 
through supercritical Hopf bifurcations, and there are stable periodic orbits, W, and 
Wi,  around them (figure 12 b) .  These periodic orbits grow, then undergo a sequence of 
bifurcations as R is increased (in particular they become quasi-periodic tori, and may 
become aperiodic). However, they ‘remain quantitatively close to simple loops in 
phase-space ’ (Zaturska et al.). It appears from numerical integrations that these two 
orbits are the only attractors of the system for R < Rho, (Rho, < 20). In  particular, 
general trajectories eventually remain on one side or other of the symmetry line, 9. 
To conform with later notation we shall assign to  each orbit a code - a 0 (or 1 )  if the 
orbit lies below (or above) Y (figure 12). (With reference to the figure, ‘above 9’ 
means x1 + x, > 0, and ‘below ’ the converse.) For example, the orbit %, close to I1 has 
code 1, and the orbit %; close to  I ;  has code 0. 

As R is increased, Wl and Wi grow, then a pair of orbits which are homoclinic to  the 
fixed point I is formed, when R = Rho, (see figure 12c). For R > Rho, aperiodic 
solutions are found which cross Y in a seemingly random fashion. (Of course the 
solutions are deterministic, but their behaviour appears random because there is 
exponential separation of nearby trajectories, and sensitivity to initial position.) 
This abrupt transition to  chaos as R increases through Rho, is the ‘homoclinic 
explosion ’ (so called because an infinite number of bifurcations occurs sim- 
ultaneously, see Glendinning 1987). 
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FIGURE 12. Schematic of the (z,, s,)-phase plane for E = 0. The symmetry of the Berman problem 
under reflection about the centreline of the channel induces a symmetry in the phase plane about 
the line 9. The fixed point I represents the steady solution of type I, and k, denote the two 
branches of its unstable manifold, wU(I). The fixed points I, and I;  represent the solutions of types 
I, and 4, which are images of one another under reflection in 49. (a) R, < R < R,,. Any initial 
condition not on the stable manifold of I evolves under (6) to either I, or 4 as t +  03. (b) R,, < 
R < Rho,. Most trajectories asymptote to one of the orbits W, or W i  as t + 03. ( c )  R = Rho,. A pair of 
homoclinic orbits to I, in the butterfly configuration. (We need to consider I in at least three- 
dimensional space for this configuration to be possible.) 
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Before we proceed to describe Glendinning’s theory, we need to extend somewhat 
the results of Zaturska et al. for the symmetric system, and set up some more 
notation. The unstable manifold of I has two branches : k- which leaves I below 9, 
and k ,  which leaves I above 9’ (see figure 12). To each of these branches we can 
assign its kneading sequence, a semi-infinite sequence of 0s and 1s which describes the 
loops that it makes in phase space above and below 9. (The kneading sequence is 
defined similarly for arbitrary trajectories, and essentially captures all of their 
interesting dynamics.) We can determine the kneading sequence for k ,  numerically 
by choosing an appropriate initial condition, f o ( y ) .  (This will be the steady solution 
I plus a small multiple of the unstable eigenmode, g,, i.e. we start a little distance 
along P ( I )  from I . )  We find that for R < 19.6, k- = OOO . . . (and by symmetry k,  = 
111 ...), while for R = 19.7, k- = 0111 ... (and k, = 1000 ...), see figure 13. (The 
reference to both the unstable manifold and its kneading sequence as k ,  is strictly 
an abuse of notation.) From this we conclude that for some intermediate value of R ,  
Rho,,,, both branches of the unstable manifold of I return to I as t +. 00, that is, a pair 
of homoclinic orbits is formed. Figure 13 shows the homoclinic orbit formed by k- 
when R = Rho,,,. That of k,  is its mirror image in the symmetry line 9’. (A trajectory 
x ( t )  = (x,, z2) is a homoclinic orbit to I if x ( t )  + I as t +- 00 and as t +. 00.) This pair 
of homoclinic orbits lies in the ‘ butterfly ’ configuration, where both orbits approach 
I in the same direction as t +. 00. It is the formation of this pair of homoclinic orbits 
in the butterfly configuration which makes the Proudman-Johnson equation with 
equal-suction boundary conditions ‘ Lorenz-like ’ (Glendinning 1987 ; Sparrow 1982 ; 
Lorenz 1963). 

6.2. Breaking the symmetry : the codimension-two unfolding 
So far, our presentation of results has been motivated by Glendinning’s theory which 
describes a codimension-two (that is, two-parameter) unfolding of the homoclinic 
explosion. In particular, this theory describes how the transition to chaos is more 
gentle when the symmetry of the ‘Lorenz-like’ dynamical system is broken (in our 
case, when e =k 0). 

Glendinning considers a family of three first-order ordinary differential equations 
which has two parameters, denoted by po and p,. These parameters have a definition 
which is convenient for discussing the bifurcation structure of the dynamical system, 
but which is otherwise rather complicated (Glendinning 1987). The family of ODES 
is ‘Lorenz-like’ if the following assumptions are made. First, there is a saddle point, 
0, which has a one-dimensional unstable manifold, wU(O), for all parameter values. 
Secondly, the parameters are defined so that when po = 0 there is a homoclinic orbit 
(denoted by ro) to the fixed point 0 formed by one branch of the unstable manifold; 
and when p1 = 0 the other branch similarly forms a homoclinic orbit, r,. Thirdly, 
when both po and p1 are zero, there are two homoclinic orbits to 0 which are in the 
butterfly configuration. Finally, the fixed point 0 has real eigenvalues A l , 2 , 3  which 

(38) 
satisfy 

Under these assumptions, Glendinning describes the bifurcations of the system for 
small values of the parameters, in a neighbourhood of the homoclinic orbits r0,, in 
phase space : there are eight regions in (po, pl)-space in which the kneading sequences 
of the two branches of urU(0) are given. In particular a region in the first quadrant 
of parameter space is shown to give systems with complicated dynamics (region 8 in 
figure 14). 

Clearly, in applying Glendinning’s theory to the Berman problem we shall identify 

A, > 0 > A, > A, and -A2/A,  < 1. 
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FIGURE 13. Schematic, and selective picture of the (z,,z,)-phase plane. (Only those features 
relevant to  the behaviour of k- are shown.) The evidence for a homoclinic orbit from k-: For (a) 
R < 19.6, k- has kneading sequence 000. .., and asymptotes to  $3; as t + co ; (6) For R 2 19.7, k- has 
kneading sequence 01 11 .. . and asymptotes t o  Wl as t + co. Therefore, ( c ) ,  we conclude that  for some 
intermediate value of R there is a homoclinic orbit t o  Z from k-. By symmetry there is also a 
homoclinic orbit from k, at this value of R. 
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FIGURE 14. The eight regions in (po,y,)-parameter space. There are complicated dynamics in 
region 8 in the first quadrant (see Glendinning 1987). 

his fixed point, 0, with ours, I ,  and our main task will be to relate his parameters (po, 
p l ) ,  to  ours, (R, E )  close to (Rhom, 0). Our assumption that close to homoclinicity the 
dynamics of the Proudman-Johnson PDE are essentially three-dimensional is 
crucial to this application. 

The symmetries of our system and of Glendinning’s model imply that the line e = 
0 must correspond to the line po = pl. (For suppose we reflect phase-plane trajectories 
in the line 9’. On the one hand this is equivalent to the map e H - E ,  f (y ,  t )  H - f ( - y, 
t ) ,  which reflects the parameter E in the line e = 0. Alternatively, this interchanges 
the role of po and pl, which corresponds to reflection in the line po = pl. Therefore the 
lines E = 0 and po = p1 are identical.) Thus for E = 0, increasing R corresponds to 
moving along the line po = p1 from the third to the first quadrant in (po, pl)-space (see 
figure 15, which shows the qualitative relationship between (R ,E)  and (po,pl)  for 
sufficiently small I(,uo, pJ) .  

To illustrate the consequences of Glendinning’s theory for the Berman problem 
near symmetry, consider the bifurcations which are predicted as R is increased for 
some fixed, small, non-zero e. That is, consider the bifurcations along a line e = go in 
(R, €)-space. On increasing R (see figure 15) we should cut first the line po = 0 then the 
line p1 = 0, and so there should first be a homoclinic orbit from one branch (k-) of 
W ( I )  then a homoclinic orbit from the other (k+), by definition of po and pl.  These 
two homoclinic orbits will be formed a t  different values of R because we have broken 
the symmetry of the problem. By numerical integration of the Proudman-Johnson 
equation to  find k, for a variety of small positive e ,  we aim to locate those parameter 
values (R, 8 )  which lie on either the po-axis or the pl-axis, and thereby determine the 
relationship between the two sets of parameters. Then we can apply Glendinning’s 
theory to predict the bifurcations of the Berman problem in terms of R and E ,  and 
find where the system has complicated dynamics. 
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FIGURE 15. The qualitative relationship between parameters (R,  E )  and (yo,,ul). A typical line E = 
c0 is shown (the dashed line) - note that it passes through regions 1,2 ,4 ,6 ,8  as R is increased. Thus 
there should a smooth transition from simple dynamics (in region 1) to  complicated dynamics (in 
region 8) for slightly asymmetric Berman problems. The origin is (R,  E )  = (R,,,, 0 ) ,  (po,,uLI) = (0 ,O).  

(We should clarify the term ‘complicated dynamics’ with which we have described 
solutions of the symmetric Berman problem for R > Rhom. We have assumed that the 
aperiodic solutions found by Zaturska et al. lie on a strange attractor, although they 
could conceivably be just long-term chaotic transients, hence our rather vague 
description of them. The complicated dynamics predicted by Glendinning’s theory 
arise from the birth of a strange invariant set, when the homoclinic connection forms. 
This invariant set, however, is not attracting for any of the parameter values in 
Glendinning’s (local) analysis, although it has a profound effect on solutions by 
introducing chaotic transients. A strange attractor may be formed at  larger values 
of po and ,ul than those considered by Glendinning (Afraimovich & Shil’nikov 1983).) 

Much of the discussion above may seem rather abstract and remote from fluid 
mechanics. We therefore provide an illustrative example, and describe some typical 
numerical results from integrations of (6) for small E .  

6.3. Numerical results for B = 1/39 z 0.02564 

A good illustrative example of our numerical integrations of (6), (7) for small E is 
when E = Q - we should observe the scenario described above as we increase R. 

For R < 13.372, k, = 111 ... and k- = 000 ... . Each branch of P ( I )  lies in the 
stable manifold of a periodic orbit : k- asymptotes to %: as t + co , and k, asymptotes 
to Wl as t + co. W1 and %; are stable periodic orbits created from supercritical Hopf 
bifurcations of the steady solutions I ,  and I ;  respectively. (They appear to remain 
periodic, and do not become, for example, quasi-periodic or chaotic, as the 
corresponding solutions do when 6 = 0.) These stable orbits are irrelevant to 
Glendinning’s theory, since they are outside the neighbourhood of the homoclinic 
orbits where the theory applies. We conclude that for R d 13.372 we are in region 1 
of (po, ,ul)-space (see Glendinning 1987). 

When R = 13.382, k, = 111 ... and k- = 011 1 ..., and we are now in region 2 of (po, 
,+space (Glendinning 1987). We conclude that for some R = Rhom-, where Rho,- E 
(13.372,13.382), a homoclinic orbit fo is formed by k-. Note that a small change in 
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FIQURE 16. Three trajectories in (fuy( - 1, t ) ,  fuy(l, t))-phase space when E = & and R = 13.528. The 
two periodic orbits and %fi are shown, as is the lower branch of the unstable manifold of I ,  k-, 
which has kneading sequence 01 11  . . . . 

B (from 0 to &,) has induced a large change in Rhom- (from 19.6 to 13.4). This shows 
that a very small asymmetry in the problem may change the quantitative results by 
a large amount. We return to this point below. 

Both orbits Wl and W i  persist as R is increased through Rhom-, but for R > Rhom- 
there is a further periodic orbit, P, ‘a single non-stable periodic orbit with code 0’  
(Glendinning 1987) close to r,. 

As R is increased above 13.382, k, and k- retain their codes and the stable orbits 
‘ik; and Ui persist (figure 16). The periodic orbit Wi is annihilated in a saddle-node 
bifurcation with the unstable orbit P for R = R,,E (13.577,13.601). The periodic 
orbits which have code 0 can be summarized in a diagram (see figure 17a) which 
shows the periods of the orbits plotted against R (cf. Glendinning & Sparrow 1984). 
A similar diagram for the symmetric case studied by Zaturska et al. is more 
complicated (see figure 17b) : first, it has to indicate the quasi-periodic (and chaotic) 
orbits which arise from the periodic Hopf orbits; secondly, the details of which 
solution is shed from the homoclinic orbit r, are unknown. That is, we do not know 
whether each homoclinic orbit sheds an unstable solution which then coalesces with 
the appropriate stable Hopf orbit for some R > Rhom, as is the case when E = 8 (see 
the right-hand diagram on figure 17 b)  ; or whether instead the stable %; simply grows 
until it collides with I as R+Rhom (see the left-hand diagram on figure 17b). 

As R is increased above R,,, Wl grows in size but does not meet I ,  and solutions from 
general initial conditions result in trajectories whose kneading sequences are 
eventually a string of 1s. In particular, k- = 0111 ... and k, = 111 ... for all R > 
RhOm-. So we remain in region 2 and increasing R further does not take us across the 
line ,ul = 0. This seems to conflict with the schematic diagram in figure 15 which 
shows how the two sets of parameters (R, e) and (po,pl)  are related, and where any 
line E = E ,  must cross both p coordinate axes. The point is, however, that figure 15 
is valid only in a neighbourhood of (p,, p l )  = (0, 0) ,  and it is only in such a region that 
we expect an approximately linear relation between the two sets of parameters. This 
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FIQURE 17. The period of those time-dependent solutions with code 0, plotted against R. (a) B = &. 
The solutions marked are the stable periodic orbit U; and the unstable periodic orbit which is shed 
from the lower homoclinic orbit ro (solid and dashed lines respectively). The stable periodic orbit 
persists through R = Rho,- x 13.38 and is destroyed in a saddle-node bifurcation at  R = R,, x 13.6. 
(b) Two possible scenarios fore = 0. The shaded region indicates quasi-periodic solutions with code 
0. More, and more accurate, integrations would determine which scenario is the true one. 

FIQURE 18. The relationship between (R,E) and (po,pl) is highly stretched. The positive quadrant 
in (,uo,pl)-space occupies a very small region in (R,B)-space, so a very slight asymmetry replaces 
complicated dynamics by simple dynamics. (Recall from figure 14 that the interesting dynamics 
occur in region 8, which lies in the positive quadrant in (,uo,,ul)-space.) 
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E 

0 19.65f0.05 
0.000 25 16.7125f0.0125 
0.Ooo 50 16.30 & 0.05 

TABLE 1 .  Values of the Reynolds number, Rho,-, at which the lower branch, k-, of the unstable 
manifold of Z is homoclinic to 1. Note the great change in Rho,- even with slight symmetry 
breaking. 

means that for small enough e0 the line B = e0 will cut both p-axes (figure 15). Since 
the line E = & cuts only the line po  = 0 we conclude that we need leOl < & for figure 
15 to  represent accurately the relation between the two sets of parameters. 

Figure 18 illustrates qualitatively (but more accurately than figure 15) how our 
numerical integrations for E = & suggest that  (R, E )  and ( p o , p l )  are related. The linear 
relationship of figure 15 is clearly very ‘stretched’, and so is valid only for extremely 
small I E ~ .  The positive quadrant in (po,pl)-space therefore occupies a very small 
region in (R,B)-space, so that the Berman problem must be very close to symmetry 
to have complicated dynamics. 

6.4. Discussion 
Since the line E = & does not cut the line p1 = 0, it is clear that  a small asymmetry 
in the time-dependent Berman problem has a surprising, disproportionate effect on 
the dynamics. I n  fact we have found no chaotic solutions of the Proudman-Johnson 
equation when E = &. An example of the large quantitative effect of slight symmetry 
breaking is shown in table 1,  where values of Rho,- are given for various values of 
the symmetry-breaking parameter B .  (Recall that  Rho,- is the value of R for which 
k- first makes a homoclinic orbit to I ,  and that the curve R = Rho,--(€) is the curve 
po = 0, by the definition of Glendinning 1987.) We estimate that dR,,,-/ds w 
(16.7125- 19.65)/0.00025 w - 10000, when e = 0 (that is, the slopes of the po and p1 
axes in (R,E)-space are ~0.OOOl). This shows the ‘stretched’ nature of the 
relationship between the two sets of parameters, as indicated schematically in figure 
18. Region 8, which lies in the first quadrant in (p0,pu,)-space, is clearly a very small 
region in (R, €)-space. 

Elsewhere (Cox 1989, 1990) we have shown that the Lorenz system itself may 
exhibit both the ‘stretched’ behaviour we have seen in the Berman problem and a 
‘nicer’ relationship between the two sets of parameters, in two different cases. 
Although we do not understand the reasons why the Berman problem has such a 
small region of chaos, i t  is a t  least comforting to  know that there are other systems 
where this behaviour occurs, even if it is not understood there either! 

7. Conclusion 
We have analysed similarity solutions of the Navier-Stokes equations for flow in 

a porous-walled channel. Such an analysis increases our repertoire of known ‘exact ’ 
solutions, although, as with other similarity solutions, ours are physically unrealistic ; 
the assumed form requires an infinite two-dimensional channel, and ignores three- 
dimensional disturbances, and two-dimensional disturbances not of the similarity 
form. In  a laboratory experiment we might expect the two-dimensional similarity 
solutions to  develop downstream from the channel inlet, and away from the outlet 
and the sidewalls. Numerical investigations of the full steady two-dimensional 

2-2  
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Navier-Stokes equations for flow in a symmetric porous-walled channel of finite 
length have been carried out by Brady & Acrivos (1981) and Raithby & Knudsen 
(1974). Brady & Acrivos find that the Berman similarity solution develops 
downstream of the inlet, but that  the fraction of the channel’s length over which i t  
holds decreases as R increases. When R is greater than about 6, the similarity solution 
does not develop a t  all. However, we should be cautious in interpreting this as 
implying that the similarity solution is invalid for R greater than 6, for they assume 
their two-dimensional solutions to be symmetric, and their numerical code effectively 
solves a time-dependent problem. Recall that a t  R = R, x 6.001 353 the symmetric 
similarity solution becomes temporally unstable (in a pitchfork bifurcation). It is not 
then surprising that Brady & Acrivos fail to find a symmetric similarity solution for 
R greater than about 6. In  such full two-dimensional integrations to date, asymmetric 
solutions of the symmetric problem have not been sought (the integrations have been 
across half the channel width, with the symmetry condition aulay = v = 0 applied on 
the centreline of the channel). Nor has the asymmetric problem been examined. 
Unsteady two-dimensional flows in a porous-walled channel, too, await investigation. 
All would yield interesting information, and indicate the range of wall-suction rates 
for which the similarity solutions form a good approximation to  realizable channel 
flows. 

Laboratory experiments on porous-walled channel flow (Raithby & Knudsen 
1974) and of porous-walled pipe flow (Bundy & Weissberg 1970) indicate that the 
similarity solution develops rapidly away from the inlet when there is fluid injection. 
The conclusions for suction are less clear cut:  a further careful study would be 
illuminating. 

We have described numerical solutions of the ODE governing steady solutions of 
the Berman problem, and from our numerical results we have inferred the 
bifurcations which occur. These were summarized in figure 5. 

For the time-dependent problem, the limit-cycle solution which holds for large R, 
when e = 1, has an explosive phase of essentially inviscid growth. For all R, this 
inviscid intermediate asymptotic phase has a finite-time singularity, which does not 
occur in the full solution of the Proudman-Johnson equation. Instead the inviscid 
phase seems always to be moderated by viscosity near one wall - the inviscid velocity 
profile spreads out as time advances, and eventually ceases to represent the full 
solution accurately when a hump ‘ hits ’ the lower wall. The issue of whether solutions 
of the Proudman-Johnson PDE (6) can develop singularities in a finite time, 
however, has not been satisfactorily resolved. Our experience is that the numerical 
overflow which often occurs when integrating this PDE can always be removed by 
refining the spatial grid, and therefore it does not represent a mathematical 
singularity in the exact solutions. The numerical overflow which was reported by 
Childress et al. (1989) for the Proudman-Johnson equation with homogeneous 
boundary conditions was originally interpreted as evidence of a mathematical 
singularity. Subsequent numerical integrations (S. Childress, personal communi- 
cation) have shown that a finer spatial grid can always remove the overflow, as in the 
Berman problem. That is, the numerical overflow does not in fact represent a 
mathematical singularity. Whether there may yet be such singularities for larger 
values of the Reynolds number than those tried so far is an open question. An 
example of a nonlinear PDE which has such ‘self-focusing’ singularities is the 
nonlinear Schrodinger equation (Tabor 1989). For other, dissipative PDEs such as 
the KuramotoSivashinsky equation (Foias et al. 1988) and the complex Gin- 
zburg-Landau equation (Doering et al. 1988) it has been possible to calculate 
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rigorous bounds on solutions, and it may be possible to apply these techniques to the 
Proudman-Johnson equation. 

An interpretation of the large-R limit cycle for laboratory flows would be 
premature since we do not know whether the similarity solutions develop in real 
channels a t  such high wall-suction rates. In particular, we do not know whether the 
time-dependent similarity solutions will develop in a realistic flow. A similar 
comment limits our interpretation of the transition to chaos ($6). Regardless of this 
limitation, however, the route to chaos is important because it shows a ‘Lorenz-like’ 
transition in the full Navier-Stokes equations, and not merely in some low-order 
truncation. There is a richer structure to the time-dependent solutions of the Berman 
problem when the walls are accelerating symmetrically (Watson et al. 1990) rather 
than porous. In  that case, however, the robustness of the chaos to symmetry 
breaking is unknown. (We should mention here a related study by Goldshtik & 
Javorsky (1989) of the similarity solution for the axisymmetric flow between a 
porous rotating disk and a plane. The Navier-Stokes equations are reduced to a pair 
of coupled PDEs for the velocities, and a transition to chaos is reported as the suction 
rate through the porous disk is increased. An analogy with the Lorenz system is 
made, although the analogy is metaphorical rather than direct because their system 
is not ‘Lorenz-like’ in the sense of Glendinning (1987).) 

The transition to chaos in the Berman problem is predicted by the theory of 
dynamical systems to  be smooth when the symmetry of the problem is broken, 
although our numerical calculations indicate that the system must be extremely 
close to symmetry for complicated dynamics to arise at all from the perturbed 
homoclinic explosion. This route to chaos in the Navier-Stokes equations may thus 
be doubly unobservable in practice : first, the similarity solutions may not be stable 
to three-dimensional disturbances at sufficiently high wall-suction rates ; and 
secondly, it  is unlikely that the system could be made sufficiently symmetrical for 
complicated dynamics. Of course, other asymmetries (or more general experimental 
imperfections, for example time-dependence or spatial non-uniformity in the suction 
at the walls) may act to reinforce the chaos. This is an open question. 
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